11.8. Differential Equations Lab#

11.8.1. Section 2 Questions#

  1. List the type, order, and parameters of each of the following differential equations. For each ordinary differential equation, determine if it is linear or nonlinear.

    • \(\dfrac{dy}{dx} +3x^2 = sin(x) + 3\)

    • \((\dfrac{dy}{dx})^2 +3x^2 = sin(x) + 3\)

    • \(\dfrac{dy}{dx}k +3x^2 k = ysin(x) + 3\)

    • \(\dfrac{d^2y}{dx^2} +3x^2 = sin(x) + 3\)

\( \)

  1. List the type, order, and parameters of each of the following differential equations. For each ordinary differential equation, determine if it is linear or nonlinear.

    • \(\frac{\partial w}{\partial u} + \frac{\partial^2 w}{\partial v^2} = u\)

    • \(\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} = u^2\)

    • \(\dfrac{dt}{dv}t = tan(t) +9\)

    • \(\dfrac{dt}{dv}v = tan(t) +9\)

\( \)

  1. Show that \(y = e^{2t}\) is a solution for all \(t\) to \(y''+y = 5y\).

  2. Show that \(y = te^{5t}\) is a solution for all \(t\) to \(y''-10y'=-25y\)

  3. Show that \(y = sin(3t)+cos(3t) + t^3 -6\) is a solution for all \(t\) to \(y'''+9y' = 27t^2+6\)

  4. Show that \(y = 12t^2+t^4\) is a solution for all \(t\) to \((y'+y'')-(y'''+y^{(4)}) = y-t^4+4t^3\)

11.8.2. Section 3 Questions#

  1. Solve the separable equations:

    • \( \dfrac{dx}{dt} = \dfrac{1}{t}e^{-2x} \)

    • \( \dfrac{dx}{dt} = \dfrac{-1}{x^2t^2} \)

    • \( \dfrac{dy}{dx} = cos^2(y)e^{x^2}2x \)

    • \( \dfrac{1}{x}-\dfrac{dx}{dt}=x^{-1}\dfrac{1}{sec(t)} \)

  2. Solve the linear equations using the method of integrating factors (\(\mu(t) = e^{P(t)}\))

    • \( t\dfrac{dx}{dt} = sin(t) -x \)

    • \( \dfrac{dx}{dt} + x 4t^3 = \dfrac{1}{t e^{t^4}} \)

    • \( \dfrac{dy}{dx} + \dfrac{y}{x} = \dfrac{1}{x+x^3} \)

    • \( \dfrac{dy}{dx}x + \dfrac{-2y}{x^2} = xe^{-x^{-2}}sec(x)tan(x) \)

  3. Plot the direction fields

    • \( \dfrac{dy}{dx}= x^2-y^2-y \)

    • \( \dfrac{dy}{dx}= x(y-x) \)

    • \( \dfrac{dy}{dx}= y(x-y) \)

  4. Find the equilibrium solutions and draw the phase lines for the following functions. Classify each equilibrium solution.

    • \( y'=(y-6)(y+7) \)

    • \( y'= y^3-8y^2+12y \)

    • \( y'= y(y^2-1) \)

    • \( y'= y^2(y^2-1) \)

11.8.3. Section 4 Questions#

  1. Solve the initial value problem:

    • \( x'' - x' -42x = 0 \); \( x'(0) = 0\), \( x''(0) = 1\)

    • \( x''-14x'+48x=0 \); \(x'(0)=0\), \(x''(0)=5\)

    • \( x''+6x'+9x=0, x'(0)=0, x''(0)=9 \)

    • \( x''+16x'+64x=0, x'(0)=0, x''(0)=8 \)

    • \( x''+4x'+8x=0, x'(0)=0, x''(0)=4 \)

    • \( x''+10x'+30x=0, x'(0)= 0, x''(0)= 30 \)

  2. Solve the non-homogeneous equations:

    • \( x''-9x'+20x=-10 \)

    • \( x''-9x'+20x=20t^2 \)

    • \( x''-9x'+20x=e^{3t} \)

    • \( x''-9x'+20x=e^{5t} \)

  3. Solve the non-homogeneous equations:

    • \( x''+4x'+4x =sin(t)\)

    • \( x''+4x'+4x =8t^2 \)

11.8.4. Section 5 Questions#

  1. Rewrite as a system of first order equations:

    • \( x'''+3x''+12x'+x=sin(t)+e^{3t} \)

  2. Test the following sets of vectors for linear independence:

    • \(\biggl\{\begin{bmatrix} 2e^{t} \\ e^{12t} \end{bmatrix}, \begin{bmatrix} 12e^{2t} \\ 6e^{12t} \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 5e^{3t} \\ 6e^{6t} \end{bmatrix}, \begin{bmatrix} 10e^{3t} \\ 12e^{6t} \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 3t \\ 1 \end{bmatrix}, \begin{bmatrix} 3t \\ tan^2(t) \end{bmatrix}, \begin{bmatrix} 6t \\ sec^2(t) \end{bmatrix} \biggr\}\)

  3. Find the eigenvalues and eigenvectors:

    • \(\biggl\{\begin{bmatrix} 3&0 \\ 0&4 \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 6&2 \\ -2&2 \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 3&2 \\ -9&-3 \end{bmatrix}\biggr\}\)

  4. Solve the linear system of differential equations:

    • \(\biggl\{\begin{bmatrix} 3&-2 \\ 4&9 \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 5&-2 \\ 2&1 \end{bmatrix}\biggr\}\)

    • \(\biggl\{\begin{bmatrix} 6&13 \\ -4&-6 \end{bmatrix}\biggr\}\)

  5. Edit the code from chapter 5.4 to plot the phase planes, then find the equilibrium solutions:

    • \( \dfrac{dx}{dt}= x (x + 3) - 2xy \), \( \dfrac{dy}{dt} = y (3y - 8) - xy \)

    • \( \dfrac{dx}{dt} = x (5 - 2x) + xy\), \( \dfrac{dy}{dt} = y (y + 1) + y\)

  6. Find the nullclines, equilibrium solutions, and linearization of the system:

    • \( x'=x(1-x)-4xy \); \( y'=y(2-y)-3xy \)

11.8.5. Section 6 Questions#

  1. Solve the following Laplace Transforms by hand, using the formula \(\mathcal{L}(f(t)) = \int_{0}^{\infty} e^{-st}f(t) \mathrm{d}t \equiv F(s).\)

    • \( f(t)= sin(t)\)

    • \( f(t)= cos(t)\)

    • \( f(t)=8t+e^{3t}+cos(3t) \)

  2. Find the inverse Laplace Transforms of the following functions:

    • \( \mathcal{L}(x)=-\dfrac{14}{s^3}+\dfrac{1}{s^2+49} \)

    • \( \mathcal{L}(x)= \dfrac{s+9}{(s+2)(s+3)}\)

    • \( \mathcal{L}(x)= x''+12x=3, x(0)=x'(0)=0 \)

  3. Express the following functions in terms of the unit step function, then take the Laplace Transform:

    • \( f(t) = \begin{cases} 0 & \text{ if } t < 2 \\ 1 & \text{ if } t>2 \end{cases} \)

    • \( f(t) = \begin{cases} 2 & \text{ if } 0< t < 1 \\ 3 & \text{ if } 1<t<2 \\ 4 & \text{ if } t>2 \end{cases} \)