JNB Lab Solutions

Hide code cell source
import matplotlib.pyplot as plt
import numpy as np

7.16. JNB Lab Solutions#

Exercise 1.1

a)

Hide code cell source
plt.figure(figsize=(8, 4))
plt.xlim=[0,1]
plt.ylim=[0,.1+np.log(.5)]
p=np.linspace(0.001,.999,1000)
H= -(p * np.log(p) + (1-p) *  np.log(1-p))
plt.plot(p,H,color='r')
plt.grid()
plt.xlabel("p")
plt.ylabel("H")
plt.show()
../../_images/bea7d883039ab3b67ee0184674ef822e90b2515cc216f8cc6a6be6423d08238b.png

b) Note that \(H(p)=H(1-p)\), so \(\lim_{p\rightarrow 0^+}H(p)=\lim_{p\rightarrow 1^-}H(p)\).

Using L’Hospital’s Rule,

\[ \lim_{-p\rightarrow 0^+}p\ln p = \lim_{p\rightarrow 0^+} \frac{-\ln p}{1/p} = \lim_{p\rightarrow 0^+} \frac{-1/p}{-1/p^2}= \lim_{p\rightarrow 0^+} p = 0. \]

Furthermore, \(\lim_{p\rightarrow 0^+}-(1-p)\ln (1-p)=\lim_{q\rightarrow 1^-} -q \ln q = 0\). The desired result follows.

c)

Let \(H(p)= -[p\ln p + (1-p)\ln(1-p)]\). Then

\[ H'(p) = - [( \ln p +1 ) + (-\ln(1-p) -1)=-[\ln p - \ln(1-p)]= -[\ln \frac{p}{1-p}] = 0 \Rightarrow \frac{p}{1-p}=1\Rightarrow p=1-p\Rightarrow p=.5. \]

Moreover, for values of \(p\) near \(p=.5\), if \(p<.5\) then \(H'(p)>0\) so \(H\) is increasing, and if \(p>.5\), then \(H'(p)<0\) so \(p\) is decreasing. This implies \(H(.5)\) is a max.

Note that in this case \(H''(.5)=0\) so the second derivative test does not apply.

Exercise 2.1

  1. a), b), and c) all have the same value of H= -(.5 ln .5 + .3ln .3 + .2 ln .2) \(\approx\) 1.03.

  2. Which option is labeled “1”, “2” or “3” is inconsequential in the computation of the entropy of disagreement. (Note that this makes it difficult to apply entropy to a histogram where the bin numbers are purposefully ordered. For example, the label i might mean a student fails i tests in a particular math course.)

Exercise 3.1

a) \(\int_0^{\infty} ke^{-kx}\,dx = -e^{-kx}\mid_0^{\infty}=0+1=1.\)

b) The mean \(E(X)\) is given by the integral \(E(X)=\int_0^{\infty} (kx) e^{-kx}\,dx.\) Using integration by parts with \(u=kx\), \(du=k\,dx\), \(dv=e^{-kx}\,dx\), \(v=-(1/k)e^{-kx}\), we have

\(E(X)= - xe^{-kx}\mid_{x=0}^{\infty} + \int_{x=0}^{\infty} -e^{-kx}\,dx= 0 -(1/k)e^{-kx}\mid_{x=0}^{\infty}=1/k.\)

Exercise 4.1

a)

Hide code cell source
import math
import random
import scipy.stats as stats
from scipy.stats import powerlaw
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 5*sigma, mu + 5*sigma, 100)
plt.plot(x, stats.norm.pdf(x, mu, sigma),color='b')
plt.plot(x, stats.cauchy.pdf(x, mu, sigma),color='red')
plt.legend(["Normal","Cauchy"])
plt.show()
../../_images/084b91ffc7d5e06c71a8e9bdad0009353b5c642aba3e98120bb1c328dd150970.png

b)

Hide code cell source
trials=10000
class_size=10
s = np.random.standard_cauchy(trials*class_size)

Hroutine=[]
Hexceptional=[]
Hsum=[]
k=0

for j in np.arange(0,trials,1):
    routine=0
    exceptional=0
    for i in np.arange(0,10,1):   
        if s[k]>3 or s[k]<-3:
            exceptional=exceptional+1
            k=k+1
        else: 
            routine=routine+1
            k=k+1
    if routine>0:
        p=routine/10
        Hroutine.append(-p*np.log(p))
    else:
        Hroutine.append(0)
    if exceptional>0:
        p=exceptional/10
        Hexceptional.append(-p*np.log(p))
    else:
        Hexceptional.append(0)
    Hsum.append(Hroutine[j]+Hexceptional[j])

        
H=np.mean(Hsum)
Hex=np.mean(Hexceptional)

print("Entropy of Cauchy Class=", H)  
print("Contribution to Entropy by Exceptional Students=", Hex)
Entropy of Cauchy Class= 0.4498874005479002
Contribution to Entropy by Exceptional Students= 0.27849303712298606

Exercise 5.1

Hide code cell source
import numpy as np
import pandas as pd
import random
num_cars=10

k=.1 #mean time between arrivals (in minutes)
df=pd.DataFrame()

#######PROCESS ORDERING DATA#######
df.loc[0,"order_arrival_time"]=0
df.loc[0,"time_to_order"]=15+30*random.uniform(0, 1)
df.loc[0,"pay_arrival_time"]=df.loc[0,"order_arrival_time"] + df.loc[0,"time_to_order"]
df.loc[0,"order_system_time"]=df.loc[0,"pay_arrival_time"]-df.loc[0,"order_arrival_time"]

for i in np.arange(1,num_cars,1):
    df.loc[i,"order_arrival_time"]=df.loc[i-1,"order_arrival_time"]-(60/k)*np.log(1-random.uniform(0, 1))
    df.loc[i,"time_to_order"]=15+30*random.uniform(0, 1)
    df.loc[i,"pay_arrival_time"]=max(df.loc[i,"order_arrival_time"] + df.loc[i,"time_to_order"], df.loc[i-1,"pay_arrival_time"]+df.loc[i,"time_to_order"])
    df.loc[i,"order_system_time"]=df.loc[i,"pay_arrival_time"]-df.loc[i,"order_arrival_time"]
   
####### PROCESS PAYING DATA #######  
if random.uniform(0,1)<.5:
    df.loc[0,"time_to_pay"]=30*random.uniform(0, 1) +5  #pay by cash
else:
    df.loc[0,"time_to_pay"]=15*random.uniform(0, 1)  +5  #pay by credit
df.loc[0,"pickup_arrival_time"]=df.loc[0,"pay_arrival_time"] + df.loc[0,"time_to_pay"] 
df.loc[0,"pay_system_time"]=df.loc[0,"pickup_arrival_time"]-df.loc[0,"pay_arrival_time"]
        
for i in np.arange(1,num_cars,1):
    if random.uniform(0,1)<.5:
        df.loc[i,"time_to_pay"]=30*random.uniform(0, 1)  +5  #pay by cash
    else:
        df.loc[i,"time_to_pay"]=15**random.uniform(0, 1)  +5  #pay by credit
    df.loc[i,"pickup_arrival_time"]=max(df.loc[i,"pay_arrival_time"] + df.loc[i,"time_to_pay"], df.loc[i-1,"pickup_arrival_time"]+df.loc[i,"time_to_pay"] )
    df.loc[i,"pay_system_time"]=df.loc[i,"pickup_arrival_time"]-df.loc[i,"pay_arrival_time"]
    
###### PROCESS PICKUP DATA #######
df.loc[0,"time_to_pickup"]= 60*random.uniform(0,1)+ 30
df.loc[0,"finish_time"]=df.loc[0,"pickup_arrival_time"] + df.loc[0,"time_to_pickup"] 
df.loc[0,"pickup_system_time"]=df.loc[0,"finish_time"]-df.loc[0,"pickup_arrival_time"]
        
for i in np.arange(1,num_cars,1):
    df.loc[i,"time_to_pickup"]= 60*random.uniform(0,1)+ 30
    df.loc[i,"finish_time"]=max(df.loc[i,"pickup_arrival_time"] + df.loc[i,"time_to_pickup"], df.loc[i-1,"finish_time"]+df.loc[i,"time_to_pickup"] )
    df.loc[i,"pickup_system_time"]=df.loc[i,"finish_time"]-df.loc[i,"pickup_arrival_time"]
table = df[["order_arrival_time","time_to_order","order_system_time","pay_arrival_time","time_to_pay","pay_system_time","pickup_arrival_time","time_to_pickup","pickup_system_time", "finish_time"]]
table
order_arrival_time time_to_order order_system_time pay_arrival_time time_to_pay pay_system_time pickup_arrival_time time_to_pickup pickup_system_time finish_time
0 0.000000 43.602984 43.602984 43.602984 7.556623 7.556623 51.159607 65.477791 65.477791 116.637398
1 481.388415 33.366122 33.366122 514.754537 6.231221 6.231221 520.985758 56.592074 56.592074 577.577832
2 1219.912249 41.477045 41.477045 1261.389293 23.202241 23.202241 1284.591534 58.655755 58.655755 1343.247289
3 1294.706715 30.565060 30.565060 1325.271775 12.672773 12.672773 1337.944548 43.237563 48.540305 1386.484852
4 1683.852787 43.093286 43.093286 1726.946073 6.338934 6.338934 1733.285006 82.937953 82.937953 1816.222959
5 2240.226570 43.522066 43.522066 2283.748635 16.409112 16.409112 2300.157747 51.509599 51.509599 2351.667346
6 2859.137294 39.779653 39.779653 2898.916947 6.035139 6.035139 2904.952086 57.808210 57.808210 2962.760296
7 4292.462366 27.259678 27.259678 4319.722044 23.996465 23.996465 4343.718509 76.043934 76.043934 4419.762443
8 4423.265534 35.461872 35.461872 4458.727406 34.086612 34.086612 4492.814018 76.186779 76.186779 4569.000797
9 5183.852133 22.406112 22.406112 5206.258245 8.030864 8.030864 5214.289109 37.802962 37.802962 5252.092071
Hide code cell source
def graph(num_cars,k):
    k=k #mean time between arrivals (in minutes)
    df=pd.DataFrame()

    #######PROCESS ORDERING DATA#######
    df.loc[0,"order_arrival_time"]=0
    df.loc[0,"time_to_order"]=15+30*random.uniform(0, 1)
    df.loc[0,"pay_arrival_time"]=df.loc[0,"order_arrival_time"] + df.loc[0,"time_to_order"]
    df.loc[0,"order_system_time"]=df.loc[0,"pay_arrival_time"]-df.loc[0,"order_arrival_time"]
    for i in np.arange(1,num_cars,1):
        df.loc[i,"order_arrival_time"]=df.loc[i-1,"order_arrival_time"]-(60/k)*np.log(1-random.uniform(0, 1))
        df.loc[i,"time_to_order"]=15+30*random.uniform(0, 1)
        df.loc[i,"pay_arrival_time"]=max(df.loc[i,"order_arrival_time"] + df.loc[i,"time_to_order"], df.loc[i-1,"pay_arrival_time"]+df.loc[i,"time_to_order"])
        df.loc[i,"order_system_time"]=df.loc[i,"pay_arrival_time"]-df.loc[i,"order_arrival_time"]

    ####### PROCESS PAYING DATA #######  
    if random.uniform(0,1)<.5:
        df.loc[0,"time_to_pay"]=30*random.uniform(0, 1) +5  #pay by cash
    else:
        df.loc[0,"time_to_pay"]=15*random.uniform(0, 1)  +5  #pay by credit
    df.loc[0,"pickup_arrival_time"]=df.loc[0,"pay_arrival_time"] + df.loc[0,"time_to_pay"] 
    df.loc[0,"pay_system_time"]=df.loc[0,"pickup_arrival_time"]-df.loc[0,"pay_arrival_time"]

    for i in np.arange(1,num_cars,1):
        if random.uniform(0,1)<.5:
            df.loc[i,"time_to_pay"]=30*random.uniform(0, 1)  +5  #pay by cash
        else:
            df.loc[i,"time_to_pay"]=15**random.uniform(0, 1)  +5  #pay by credit
        df.loc[i,"pickup_arrival_time"]=max(df.loc[i,"pay_arrival_time"] + df.loc[i,"time_to_pay"], df.loc[i-1,"pickup_arrival_time"]+df.loc[i,"time_to_pay"] )
        df.loc[i,"pay_system_time"]=df.loc[i,"pickup_arrival_time"]-df.loc[i,"pay_arrival_time"]

    ###### PROCESS PICKUP DATA #######
    df.loc[0,"time_to_pickup"]= 60*random.uniform(0,1)+ 30
    df.loc[0,"finish_time"]=df.loc[0,"pickup_arrival_time"] + df.loc[0,"time_to_pickup"] 
    df.loc[0,"pickup_system_time"]=df.loc[0,"finish_time"]-df.loc[0,"pickup_arrival_time"]
        
    for i in np.arange(1,num_cars,1):
        df.loc[i,"time_to_pickup"]= 60*random.uniform(0,1)+ 30
        df.loc[i,"finish_time"]=max(df.loc[i,"pickup_arrival_time"] + df.loc[i,"time_to_pickup"], df.loc[i-1,"finish_time"]+df.loc[i,"time_to_pickup"] )
        df.loc[i,"pickup_system_time"]=df.loc[i,"finish_time"]-df.loc[i,"pickup_arrival_time"]


    
    system_mean=(np.mean(df["order_system_time"])+np.mean(df["pay_system_time"])+np.mean(df["pickup_system_time"]))/3
        
    return system_mean
Hide code cell source
results=pd.DataFrame()
for n in np.arange(0,20,1):
    k=.1+.1*n
    results.loc[n,"k"]=k
    results.loc[n,"ave_system_time"]=graph(num_cars,k)
Hide code cell source
# Graph of k vs ave_system_time
import matplotlib.pyplot as plt

plt.scatter(1/results["k"],results["ave_system_time"])
plt.xlabel("mean time between arrivals in minutes")
plt.ylabel("mean time in system (seconds)")
Text(0, 0.5, 'mean time in system (seconds)')
../../_images/b45735afe821de982631869e0f1506e891c7c55b8733bfbf51acd50ac91913fe.png

Note: This type of analysis can be done using an Excel spreadsheet. For example, see https://docs.google.com/spreadsheets/d/1JPq2UfIWMTHizAq6_gH9WYm_qXZodi7v/edit?usp=sharing&ouid=101192945680365451790&rtpof=true&sd=true